About-简介说明
jieba-Github
结巴支持三种分词模式:
- 精确模式,试图将句子最精确地切开,适合文本分析;
- 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
- 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
结巴支持繁体分词
结巴支持自定义词典
算法实现简析
基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG)
采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合
对于未登录词,采用了基于汉字成词能力的HMM模型,使用了Viterbi算法
Install-安装
Python 2.x 下的安装
或者进行下载后自行引入;
Python 3.x 下的安装
目前master分支是只支持Python2.x 的
Python3.x 版本的分支也已经基本可用: https://github.com/fxsjy/jieba/tree/jieba3k
1 2 3
| git clone https://github.com/fxsjy/jieba.git git checkout jieba3k python setup.py install
|
Usage-应用
分词
函数: jieba.cut
jieba.cut方法接受两个输入参数:
+ 1) 第一个参数为需要分词的字符串
+ 2)cut_all参数用来控制是否采用全模式
jieba.cut_for_search方法接受一个参数:
+ 需要分词的字符串,该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
注意:待分词的字符串可以是gbk字符串、utf-8字符串或者unicode
jieba.cut以及jieba.cut_for_search返回的结构都是一个可迭代的generator,可以使用for循环来获得分词后得到的每一个词语(unicode),也可以用list(jieba.cut(…))转化为list
代码示例
1 2 3 4 5 6 7 8 9 10
| import jieba seg_list = jieba.cut("我来到北京清华大学", cut_all=True) print "Full Mode:", "/ ".join(seg_list) seg_list = jieba.cut("我来到北京清华大学", cut_all=False) print "Default Mode:", "/ ".join(seg_list) seg_list = jieba.cut("他来到了网易杭研大厦") print ", ".join(seg_list) seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") print ", ".join(seg_list)
|
输出为:
1 2 3 4 5
| Output: 【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学 【精确模式】: 我/ 来到/ 北京/ 清华大学 【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了) 【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
|
添加自定义词典
开发者可以指定自己自定义的词典,以便包含jieba词库里没有的词。虽然jieba有新词识别能力,但是自行添加新词可以保证更高的正确率
1
| jieba.load_userdict(file_name)
|
词典格式和dict.txt一样,一个词占一行;每一行分三部分,一部分为词语,另一部分为词频,最后为词性(可省略),用空格隔开
范例:
1 2 3 4 5 6 7
| 自定义词典: 云计算 5 李小福 2 nr 创新办 3 i easy_install 3 eng 好用 300 韩玉赏鉴 3 nz
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
| import sys sys.path.append("../") import jieba jieba.load_userdict("userdict.txt") import jieba.posseg as pseg test_sent = "李小福是创新办主任也是云计算方面的专家;" test_sent += "例如我输入一个带“韩玉赏鉴”的标题,在自定义词库中也增加了此词为N类型" words = jieba.cut(test_sent) for w in words: print w result = pseg.cut(test_sent) for w in result: print w.word, "/", w.flag, ", ", print "\n========" terms = jieba.cut('easy_install is great') for t in terms: print t print '-------------------------' terms = jieba.cut('python 的正则表达式是好用的') for t in terms: print t
|
之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 / 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
“通过用户自定义词典来增强歧义纠错能力”
关键词提取
1
| jieba.analyse.extract_tags(sentence,topK)
|
说明
setence为待提取的文本
topK为返回几个TF/IDF权重最大的关键词,默认值为20
代码示例 (关键词提取)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
| import sys sys.path.append('../') import jieba import jieba.analyse from optparse import OptionParser USAGE = "usage: python extract_tags.py [file name] -k [top k]" parser = OptionParser(USAGE) parser.add_option("-k", dest="topK") opt, args = parser.parse_args() ‘’‘ if len(args) < 1: print USAGE sys.exit(1) file_name = args[0] ’‘’ file_name=u"D:XXX/xx/xx.txt" if opt.topK is None: topK = 10 else: topK = int(opt.topK) content = open(file_name, 'rb').read() tags = jieba.analyse.extract_tags(content, topK=topK) print ",".join(tags)
|
词性标注
标注句子分词后每个词的词性,采用和ictclas兼容的标记法
用法示例
1 2 3 4 5 6 7 8 9
| >>> import jieba.posseg as pseg >>> words = pseg.cut("我爱北京天安门") >>> for w in words: ... print w.word, w.flag ... 我 r 爱 v 北京 ns 天安门 ns
|
并行分词
原理:将目标文本按行分隔后,把各行文本分配到多个python进程并行分词,然后归并结果,从而获得分词速度的可观提升基于python自带的multiprocessing模块,目前暂不支持windows
1 2
| jieba.enable_parallel(4) jieba.disable_parallel()
|
用法示例
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
| import urllib2 import sys,time import sys sys.path.append("../../") import jieba jieba.enable_parallel(4) url = sys.argv[1] content = open(url,"rb").read() t1 = time.time() words = list(jieba.cut(content)) t2 = time.time() tm_cost = t2-t1 log_f = open("1.log","wb") for w in words: print >> log_f, w.encode("utf-8"), "/" , print 'speed' , len(content)/tm_cost, " bytes/second"
|
实验结果:在4核3.4GHz Linux机器上,对金庸全集进行精确分词,获得了1MB/s的速度,是单进程版的3.3倍。
其他词典
占用内存较小的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small
支持繁体分词更好的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big 下载你所需要的词典,然后覆盖jieba/dict.txt 即可或者用jieba.set_dictionary(‘data/dict.txt.big’)
模块初始化机制的改变:lazy load (从0.28版本开始)
jieba采用延迟加载,”import jieba”不会立即触发词典的加载,一旦有必要才开始加载词典构建trie。如果你想手工初始jieba,也可以手动初始化。
Tokenize:返回词语在原文的起始位置
注意,输入参数只接受unicode
ChineseAnalyzer for Whoosh搜索引擎
引用: from jieba.analyse import ChineseAnalyzer
用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py